average theorem - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

average theorem - traducción al ruso

Wold theorem; Moving average representation; Wold's decomposition theorem; Wold decomposition theorem

average theorem      

математика

теорема о среднем

moving average         
TYPE OF STATISTICAL MEASURE OVER SUBSETS OF A DATASET
Rolling average; Exponential Moving Average; Weighted moving average; Simple moving average; EWMA; Exponentially weighted moving average; Exponential moving average; Moving average (finance); Running average; Moving average (technical analysis); Exponential average; Moving Annual Total; Smavg; Moving annual total; Moving mean; Rolling mean; Temporal average; Temporal averaging; Time average; Time averaging; Weighted rolling average; Moving Average; 7-day rolling average

общая лексика

скользящая средняя

метод скользящей средней

сокращение

MA

статистика

(метод сглаживания какого-либо показателя на некотором промежутке времени)

скользящее среднее (наиболее часто используемый индикатор в техническом анализе, линию скользящего среднего откладывают прямо на графике движения цены; считается с некоторым заранее заданным периодом: чем меньше период, тем больше вероятность ложных сигналов, чем больше период, тем слабее чувствительность скользящего среднего; существует пять распространенных типов скользящих средних: простое (его также называют арифметическим), экспоненциальное, треугольное, переменное и взвешенное)

синоним

rolling average; moving mean; sliding average; running average

Смотрите также

cost of sales; inventory cost

time average         
TYPE OF STATISTICAL MEASURE OVER SUBSETS OF A DATASET
Rolling average; Exponential Moving Average; Weighted moving average; Simple moving average; EWMA; Exponentially weighted moving average; Exponential moving average; Moving average (finance); Running average; Moving average (technical analysis); Exponential average; Moving Annual Total; Smavg; Moving annual total; Moving mean; Rolling mean; Temporal average; Temporal averaging; Time average; Time averaging; Weighted rolling average; Moving Average; 7-day rolling average

общая лексика

среднее по времени

Definición

theorem
n.
Proposition (to be demonstrated), position, dictum, thesis.

Wikipedia

Wold's theorem

In statistics, Wold's decomposition or the Wold representation theorem (not to be confused with the Wold theorem that is the discrete-time analog of the Wiener–Khinchin theorem), named after Herman Wold, says that every covariance-stationary time series Y t {\displaystyle Y_{t}} can be written as the sum of two time series, one deterministic and one stochastic.

Formally

Y t = j = 0 b j ε t j + η t , {\displaystyle Y_{t}=\sum _{j=0}^{\infty }b_{j}\varepsilon _{t-j}+\eta _{t},}

where:

  • Y t {\displaystyle Y_{t}} is the time series being considered,
  • ε t {\displaystyle \varepsilon _{t}} is an uncorrelated sequence which is the innovation process to the process Y t {\displaystyle Y_{t}} – that is, a white noise process that is input to the linear filter { b j } {\displaystyle \{b_{j}\}} .
  • b {\displaystyle b} is the possibly infinite vector of moving average weights (coefficients or parameters)
  • η t {\displaystyle \eta _{t}} is a deterministic time series, such as one represented by a sine wave.

The moving average coefficients have these properties:

  1. Stable, that is square summable j = 1 | b j | 2 {\displaystyle \sum _{j=1}^{\infty }|b_{j}|^{2}} < {\displaystyle \infty }
  2. Causal (i.e. there are no terms with j < 0)
  3. Minimum delay
  4. Constant ( b j {\displaystyle b_{j}} independent of t)
  5. It is conventional to define b 0 = 1 {\displaystyle b_{0}=1}

This theorem can be considered as an existence theorem: any stationary process has this seemingly special representation. Not only is the existence of such a simple linear and exact representation remarkable, but even more so is the special nature of the moving average model. Imagine creating a process that is a moving average but not satisfying these properties 1–4. For example, the coefficients b j {\displaystyle b_{j}} could define an acausal and non-minimum delay model. Nevertheless the theorem assures the existence of a causal minimum delay moving average that exactly represents this process. How this all works for the case of causality and the minimum delay property is discussed in Scargle (1981), where an extension of the Wold Decomposition is discussed.

The usefulness of the Wold Theorem is that it allows the dynamic evolution of a variable Y t {\displaystyle Y_{t}} to be approximated by a linear model. If the innovations ε t {\displaystyle \varepsilon _{t}} are independent, then the linear model is the only possible representation relating the observed value of Y t {\displaystyle Y_{t}} to its past evolution. However, when ε t {\displaystyle \varepsilon _{t}} is merely an uncorrelated but not independent sequence, then the linear model exists but it is not the only representation of the dynamic dependence of the series. In this latter case, it is possible that the linear model may not be very useful, and there would be a nonlinear model relating the observed value of Y t {\displaystyle Y_{t}} to its past evolution. However, in practical time series analysis, it is often the case that only linear predictors are considered, partly on the grounds of simplicity, in which case the Wold decomposition is directly relevant.

The Wold representation depends on an infinite number of parameters, although in practice they usually decay rapidly. The autoregressive model is an alternative that may have only a few coefficients if the corresponding moving average has many. These two models can be combined into an autoregressive-moving average (ARMA) model, or an autoregressive-integrated-moving average (ARIMA) model if non-stationarity is involved. See Scargle (1981) and references there; in addition this paper gives an extension of the Wold Theorem that allows more generality for the moving average (not necessarily stable, causal, or minimum delay) accompanied by a sharper characterization of the innovation (identically and independently distributed, not just uncorrelated). This extension allows the possibility of models that are more faithful to physical or astrophysical processes, and in particular can sense ″the arrow of time.″

¿Cómo se dice average theorem en Ruso? Traducción de &#39average theorem&#39 al Ruso